
Apparatus for

Quantitative Measurement of

Heat Flow in Two Dimensions

Eric Ayars, Daniel Lund, and Lawrence Lechuga

California State University, Chico

ayars@mailaps.org

This unique address allows one to connect “many”

sensors to a single microcontroller input pin, and

the microcontroller can still measure the tempera-

ture of each sensor individually.

How many is “many”? The only limits are the

amount of memory in the microcontroller and the

amount of time you want to take to get a complete

set of measurements. Here we used 100 sensors in a

10x10 grid: enough to get pretty good contour

maps of temperature on a 30cm-square aluminum

plate, but few enough that we can still get a com-

plete data set every two seconds.

The result: quantitative two-dimensional heat flow

measurements in real time.

One can use just about anything as a thermal

source: it’s sensitive enough that hot/cold drinks,

ice cubes, hands, and even breathing on it can pro-

duce interesting results.

The image at the left is a single frame from a test

run on the apparatus: there was a small bag of ice

at the top right and a soldering iron near the center.

In addition to making pretty pictures like these, the

computer can save numeric data for more complete

analysis and for comparison with predictions of the

Heat Equation. The sequence of images below

comes from just such a data run: we hit the center

of the plate with a propane torch for a few seconds

then removed the torch and watched how the heat

wave continued to propagate.

Unless you have a good infrared video camera

handy, it’s rather difficult to watch the Heat Equa-

tion in action. And even with that infrared camera,

getting quantitative data is difficult. Thermo-

couples and other electronic theromometers give

quantitative measurements, but it’s hard to watch

heat flow when you only measure temperature at

certain points... Unless you measure temperature at

a LOT of points!

This is where the DS18B20 comes in. The DS18B20

is a small 3-lead temperature sensor that can mea-

sure temperatures from -55°C to 125°C with a guar-

anteed accuracy of 0.5°C and precision of up to

0.02%. It communicates with microcontrollers via

the “One-Wire” protocol, and —this is the useful

part— each DS18B20 has a unique hard-coded address.

Red wire: +5V Black wire: ground Blue wire: data bus

Note: There’s a 1k pullup resistor between +5V and data.

Arduino Pro Mini (brains)

with USB Adaptor

board (Communications)

100 DS18B20

temperature sensors,

glued in place with

thermal epoxy

Kapton tape
(Helps keep magic smoke from leaking out of the electronics.)

Stand-offs
(so we can put it right side up

when we’re done looking at

this bottom side.)

Base: 30 cm square, 5mm thick Al plate

/*
 * FindAddress.ino
 *
 * Arduino code: when run this program will tell us the addresses
 * of any One-Wire devices on the bus.
 *
 */

#include "OneWire.h"
#include "DallasTemperature.h"
#define NDevices 16 // Max number of devices for now

OneWire oneWire(10); // Bus on pin 10
DallasTemperature sensors(&oneWire); // pass to the DT library

int N; // number of sensors
DeviceAddress address[NDevices]; // space for addresses
DeviceAddress thisAddress;

void setup() {
 Serial.begin(57600);
 sensors.begin();

 // check for number of devices
 N = sensors.getDeviceCount();
 Serial.print(N, DEC);
 Serial.println(" sensor(s) detected.");

 // Find the address for each device
 for (byte j=0;j<NDevices;j++) {
 if (sensors.getAddress(thisAddress, j)) {
 for (byte k=0;k<8;k++) {
 Serial.print(thisAddress[k], HEX);
 Serial.print(" ");
 address[j][k] = thisAddress[k];
 }
 Serial.println("");
 }
 }
}

void loop() {
 // Do nothing.
 delay(1000);
}

Before wiring

the sensors, run

this program

with each sensor

connected indi-

vidually to find

the address of

each sensor.

This lets you

build a ‘map’ of

which address

corresponds to

each sensor

position on the

grid.

/*
 * address_storage.ino
 *
 * Arduino code: run this ONCE.
 * Simply writes a list of addresses to the Arduino EEPROM, so that the
 * ThermoPlate.ino program can recall those addresses in the
 * correct order and send data to the computer for plotting.
 *
 */

#include <EEPROM.h>

byte j,k; // Used for counting loops

// These are the addresses of the 100 sensors on the (current) board,
// in "page" order: the first 10 are the top row, the second 10 the
// next row, and so on.
// Note that this data is only valid for the particular 100 sensors
// on our particular board! You'll have to fill in your own data
// for your own apparatus.
byte addr[100][8] = {
{0x28, 0x0B, 0x15, 0xB0, 0x02, 0x00, 0x00, 0x96},
{0x28, 0x6C, 0x05, 0x0C, 0x03, 0x00, 0x00, 0x84},
... omit 96 lines of addresses here ...
{0x28, 0x80, 0x24, 0x0C, 0x03, 0x00, 0x00, 0xE5},
{0x28, 0x0D, 0xD9, 0xAF, 0x02, 0x00, 0x00, 0x85}
};

void setup() {

 for (j=0;j<100;j++) { // Loop through 100 addresses
 for (k=0;k<8;k++) { // Loop through 8 bytes per address
 EEPROM.write(((j*8)+k), addr[j][k]);
 }
 }

 // Let us know that something happened by flashing the LED.
 pinMode(13, OUTPUT);
 for (j=0;j<5;j++) {
 digitalWrite(13, HIGH);
 delay(200);
 digitalWrite(13, LOW);
 delay(200);
 }
}

void loop() {
 // Loop does nothing.
 delay(1000);
}

Once all ad-

dresses are

known, use this

program to write

them to the

EEPROM on the

Arduino. This

just needs to

happen once:

after that the Ar-

duino uses that

EEPROM data to

read all the tem-

perature sensors

in order.

/*
 * ThermoPlate.ino
 *
 * This version reads the DS18B20 addresses from EEPROM, then reports
 * the temperatures on the serial line. Obviously the addresses must
 * be placed IN the EEPROM first, in the right order, via a program
 * such as address_storage.ino.
 *
 */

#include <OneWire.h>
#include <DallasTemperature.h>
#include <EEPROM.h>

#define NDevices 100 // Number of DS18B20s
#define BUS 10 // OneWire bus on pin 10

OneWire oneWire(BUS);
DallasTemperature sensors(&oneWire); // pass to the DT library

DeviceAddress TAddress; // 8-bit T-sensor address
int EAddress; // EEPROM address pointer

void setup() {
 // Just get ready for communication. loop() does all the work.
 Serial.begin(57600);
 sensors.begin();
}

void loop() {

 // Send out a global "check temperatures" command
 sensors.requestTemperatures();

 // Now get those temperatures
 EAddress = 0; // Start at beginning
 for (byte j=0;j<NDevices;j++) { // loop over devices
 // Retrieve address from EEPROM
 for (byte k=0;k<8;k++) { // loop over address bytes
 TAddress[k] = EEPROM.read(EAddress);
 EAddress += 1;
 }
 // Now TAddress is the next sensor address, read it
 // and send the results on the serial line.
 Serial.print(sensors.getTempC(TAddress));
 Serial.print(" ");
 }
 // Now we're done with all sensors, so end the line.
 Serial.println("");
}

Once all the setup

is done, the final

Arduino program

is pretty simple.

It repeatedly tells

all sensors to make

a measurement...

...then goes

through the list of

addresses...

...and asks each

sensor what it

measured...

...and sends that

line of tempera-

ture data to the

computer.

The data that reaches the USB

port is just numeric data in

text format, so anything that

can read a serial port can take

it from here. LabVIEW, IDL,

C++, send it to the web, what-

ever you prefer! We used

Python, because it’s easy and

open-source.

#!/usr/bin/env python
'''
T_reader.py
Program to capture and plot data from the 10x10 temperature sensor array.
'''

import serial, sys
from pylab import *

size = 12 # size of display window

try:
 minT = float(sys.argv[1])
 maxT = float(sys.argv[2])
except (ValueError, IndexError):
 print '''
Call program with three parameters:
 minimum expected temperature,
 maximum expected temperature,
 location of serial port.
'''
 exit(0)

start the serial port
try:
 port = sys.argv[3]
 ser = serial.Serial(port, 57600, timeout=2)
except:
 print "Could not open port %s, exiting." % port
 exit(0)

allow matplotlib animation
ion()

set up matrix to receive temperature data
grid = zeros([10,10])

read and discard a line to help get things in sync.
junk = ser.readline()

open the view window
fig = figure(figsize=(size, size))

define the levels at which to draw contours. The resolution
of the sensors at 9-bit (default) sensitivity is about 0.12,
so setting level spacing below this does not help.
levels = arange(minT, maxT, 0.12)

now the main loop, which continues until an error occurs.
while True:

 try: # this is the stuff to do unless a problem occurs.

 # Read a line of temperature data from the Arduino
 line = ser.readline()

 # split the line into a list of floating-point values
 temperatures = [float(T) for T in line.split()]

 # sort the list of temperatures into a matrix for plotting
 for j in range(10):
 for k in range(10):
 grid[j,k] = temperatures[j*10+k]

 # plot the data
 contourf(grid, levels)
 draw()

 # Handle problems here
 except ValueError:
 # error at float conversion
 print "Conversion error: frame dropped, continuing collection."
 continue
 ... and so on ...

Why 2-D?

Ok, we confess: we did this in two dimensions because

that’s just really cool. It’s probably more practical —even

in an upper-division lab— to do thermal experiments in

one dimension.

Typically, the one-dimensional heat-equation experiment

is done with a piece of insulated copper pipe and a

bunch of thermocouples. But by using this method of

reading many DS18B20 sensors with a microcontroller,

one can vastly improve that typical experiment. With

just 25 of these sensors on a meter-long pipe, one can

obtain 4cm spatial resolution and <1s temporaral resolu-

tion, at a cost of less than $100.
More details about the construction and programming of this device, including full video of the

above dataset, can be viewed at http://hacks.ayars.org/2012/06/quantitative-two-dimensional.html

